- if and are subspaces for a vector space then is a subspace (of ).
**Definition:**denotes the set of all the vectors possible to construct by adding a vector from with a vector from where and may be either set of vectors or subspace of vectors.- If and are subspaces for a vector space then is the smallest subspace which contain both and .

Advertisements
(function(g,$){if("undefined"!=typeof g.__ATA){
g.__ATA.initAd({collapseEmpty:'after', sectionId:26942, width:300, height:250});
g.__ATA.initAd({collapseEmpty:'after', sectionId:114160, width:300, height:250});
}})(window,jQuery);
var o = document.getElementById('crt-2117386534');
if ("undefined"!=typeof Criteo) {
var p = o.parentNode;
p.style.setProperty('display', 'inline-block', 'important');
o.style.setProperty('display', 'block', 'important');
Criteo.DisplayAcceptableAdIfAdblocked({zoneid:388248,containerid:"crt-2117386534",collapseContainerIfNotAdblocked:true,"callifnotadblocked": function () {var o = document.getElementById('crt-2117386534'); o.style.setProperty('display','none','important');o.style.setProperty('visbility','hidden','important'); }
});
} else {
o.style.setProperty('display', 'none', 'important');
o.style.setProperty('visibility', 'hidden', 'important');
}